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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE 1906 

AN ANALYTICAL STUDY OF THE STEADY VERTICAL DESCENT IN 

AUTOROTATION OF SINGLE-ROTOR HELICOPTERS 

By A.  A. Nikolsky arid Edward Seckel 

SUMMARY 

A detailed analysis of steady autorotative vertical descent of a 
helicopter is made, in which the effect of considering induced velocity 
constant over the disk is examined. The induced velocity is first 
considered constant, then variable over the disk; and the results are 
compared for a typical helicopter. Although considering the induced 
velocity constant over the disk causes considerable error in the load 
distribution along a blade, the revolutions per minute of the rotor and 
rate of descent are found to be negligibly affected for small angles of 
blade pitch. For high pitch angles, where blade stalling becomes 
important, the theoretical difference between blade load distributions 
obtained by considering induced velocity constant and variable may be 
expected to be enough to cause quantitative disagreement between the 
constant induced—velocity theory and experiment. 

A brief study is made of the stability of autorotation, considering 
the effect of blade stalling. At small values of blade incidence, 
stability of the autorotation will be adequate, and blade stalling can 
be neglected. As the blade incidence increases, the risk of an upgust 
causing the blades to stall and the rotor to stop becomes acute. 

INTRODUCTION 

This report is the result of the first part of a broad program to 
analyze the transient motions of a helicopter, which occur in the various 
phases of flight following power failure. As such, it is proper that it 
be concerned with steady-state vertical flight without power, or steady 
autorotative descent. 

The basis for the analysis is contained in a paper by Glauert 
(reference 1), although a somewhat similar approach was made by Bennett 
in reference 2. There is no theory adequate to analyze the states of a 
rotor in autorotative vertical descent, and recourse must be made to 
an empirical relationship between the velocity of descent and total flow 
through the rotor disk. As more experimental evidence becomes available, 
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it will be possible to modify the necessary empiricisms to improve the 
agreement "between analysis and fact. 

This work was conducted at Princeton University under the sponsor- 
ship and with the financial assistance of the National Advisory Committee 
for Aeronautics. 

SYMBOLS 

Physical Quantities 

W gross weight, pounds 

b number of blades per rotor 

E blade radius, feet 

r radial distance to blade element, feet 

x = r/R 

c blade—section chord, feet 

c equivalent blade chord, feet  ce = 
r cr dr 
r r dr 

crx blade-section solidity ratio 

a rotor solidity ratio 

'be 

bce^ 

9 blade-section pitch angle from zero lift, radians unless 
otherwise stated 

0Q blade pitch angle at hub 

0-, linear twist of blade (d = OQ + O-^x) 

8 disk area, square feet (*R^) 

p mass density of air, slugs per cubic foot 
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Air—Flow Parameters 

Y true airspeed of helicopter along flight path, feet 
per second 

Vv vertical component of V (positive down) 

fl rotor angular velocity, radians per second 

T induced inflow velocity at rotor (always positive), 
feet per second 

x.x 
/Vy - V    Up\ 

inflow ratio at a blade element    = — 1 
V ÜB.          flR/ 

u resultant velocity of the air relative to a "blade 
element, perpendicular to blade-span axis, feet 
per second 

up component of U perpendicular to axis of no feathering 
(positive up toward rotor) 

a_ blade—section angle of attack from zero lift, radians 
X 

unless otherwise stated 

^o 

A, inflow ratio with induced velocity assumed constant 

over the disk ( — 
\ÜB 

u average value of Up over disk (when induced velocity 
is assumed constant over the disk), feet per second 
(positive up) 

Blade—Element Aerodynamic Characteristics 

c, section lift coefficient 

d section profile—drag coefficient 

Sn,5-, ,&p^So     coefficients in power series for c^  as a function 

of cc^, (cd = 50 + SjOLp +  &2Qcr
2 + 53ar^ + . . .) 

c =   » CJ  corrected to account for friction torque 
o-o ao 

50« 6Q corrected to account for friction torque 
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A&o increment in 50 to account for friction torque 

(So1 = 60 + AÖo) 

where 

Of = - § ^2E^(AS0) f
1 cx3dx 

cd0
l = 50* + Sl0^ + b2°r2  + 53ar3 + • • • 

a slope of lift curve for blade, per radian (-?—M 

c7 maximum, section lift coefficient 
"•max 

xg blade station inboard of which blade is stalled 

c7 lift coefficient of stalled blade section 's 

5S profile-drag coefficient of stalled blade section 

F section thrust coefficient based on resultant 

Telocity { F = 

section thrust coefficient based on descending 

velocity [ f = ±-?@r 

Eotor Aerodynamic Characteristics 

T rotor thrust,  pounds 

Q rotor aerodynamic torque, pound—feet 

Q^ rotor friction torque, pound—feet (may include torque 
to drive auxiliary mechanisms) 

/       T Crji rotor thrust coefficient [ Cy - 
JtpE2(fiR)2 

Co rotor torque coefficient    [ Co  =  5-- ?r 
jrpRJ(ßR)< 
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rotor thrust coefficient 'based on resultant 

Telocity   ( F = 
2jtpE2u2/ 

rotor thrust coefficient based on descending 

T 
Telocity  (  f = 

2jtpR2Vv
2 

Miscellaneous 

K constant in empirical relation between    f 

and    F   (1 = 2 ± K I ] 

P2  = 

P3 

aqx 
8K 

16K9 
acrx 

c1=^fl2
=_A_fT) 

aa aapE2\s/ 

ce Jo c2 = 7?-   /      c0x2dx 

1     f1        , c0 = —   /      ex dx 
e J0 

Ck = — ß 
20^2 

a 

= = - —   f     cx3(ö0»  + b±9 + B2e2)dx 
ce Jo 

(.  = ac2 - —    I      0x2(5! + 2829)dx C* =      -       c 
e*o 

jy = c3(a - 52) 
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2Cn cl±>cyC2>Cl>°0      coefficients in power series for —SL as a function 

f20* 2     ,     ,\ of   *• I — = c0 + c±\ + c2x.d + C3X.3 + Cl^hj 

METHOD OF -ANALYSIS 

The Relation "between   ~r   and   -i- 
f F 

It was shown "by Lock in reference 3 that, for small values of 
resultant axial air velocity u through a rotor disk, the vortex and 
momentum theories are inapplicable. A relationship between u and the 
vertical component of descending velocity TT was found experimentally 

and presented in terms of nondimensional coefficients F and f by 
Glauert in reference 1. The relation between F and f given by 
Glauert is given in figure 1 of this report (the solid line). The upper 
branch of the curve is for the windmill brake state, u > 0 (in which 
the rotor operates as a windmill, the average flow through the rotor being 
in the direction of the free stream); the lower branch is for the vortex 
ring state, u < 0 (in which the actual flow through the rotor is turbu- 
lent, at some places being in the direction of the free stream, and at 
some against.  On the average, however, the flow through the rotor is 
against the free stream). 

In order to simplify the analytical treatment, and because there is 
some doubt as to the exact relationship between f and F, it is assumed 
in this report that the relationship is of the form 

±= 2 ill (1) 
f       F 

which is illustrated in figure 1 for K = 1 and 2. The upper branches 
(corresponding to the plus sign) are again for the windmill brake 
state, u > 0; the lower (for the minus sign) are for the vortex ring 
state, u < 0. 

In this report, K will usually be taken as 2, so that, in 

hovering (— = 0 ], — = 1, to agree with the vortex theory which is known 
\f   /  F 

to be reasonably accurate in its application to hovering.  The? effect of 

the different assumptions for — against — on descending velocity in 
f       F 

steady autorotation is presented in figure 2, for a sample helicopter 
(see SAMPLE CALCULATIONS) with various blade incidences.  It is seen 
that the differences are not larse. 
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Derivation of the Equations 

It is now assumed that the same relationship that exists "between f 
and F, for the rotor, exists as well between the corresponding coeffi- 
cients f and F for any "blade section, where, however, f and F are 
variable over the disk. 

Considering now any "blade section, from the definitions of f and F, 
there can "be written 

f = /^P>
2 

(2) 

and combining equations (l) and (2), 

Jpv2 8-1! *W (3) 

where, in equation (3) and hereafter, the upper sign corresponds to the 

upper "branch of — against — (the windmill "brake state) and the lower 
f       F , 

sign to the lower "branch of — against — (the vortex ring state). 
f       F 

Substituting in equation (3) the definition of f, and, since only 
vertical flight is concerned, dropping the subscript v on YT, 

g = 2IrpxR
2(v2 + KD/) (k) 

From "blade—element considerations, 

** = § a*c*2h2B3(e + ?2-) (5) dx  2 V   xfiR/ wy 
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Combining with equation (k)  and letting 

*-fö)M aox9 

P2 

P3 

a^x 
8K 

l6K9 
aCT„ 

X ÜB. 

(6) 

there results, for the two states 

A.x
2 ± 2p2\x + p2

2P3(Pi - x) = 0 (7) 

For the windmill brake state, Up > 0., \x > 0, and the solution 
must be 

*oc = -P2 1 ~ v/1 + P3(P! - x) (8) 

and it must "be that x < p . 

For the vortex ring state. Up < 0, Xx <  0, and the solution 
must be 

*x = P2 L1 - I1 ~ P3(Pl ~ x) J (8a) 

and it must be that x > pj_. 

It is apparent then, that blade elements inboard of station x = p-i 

are in the windmill brake state where the upper branch of -  asainst — 
f       F 

applies, and that blade elements outboard of station x = pj_ are in the 

vortex ring state, where the lower branch of -  against - applies. At 

station x = pj_, Xx  = Up = 0. 
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For steady autorotation, the thrust and torque equations are well 
known; 

W = T = I bafi2R3 /  cfe + ^r)x2te 
'0 

(9) 

and 

Q - 0 = § bn2^ ac^e + — lA.xx^dx - 

10 

I  cx3fö0» + 5]_0 + S20
2jdx - 

JO 

CX A»j£ 

0 

(b±  + 2952 dx —  I  cS^xX-x^dx 

0 

(10) 

in which the drag coefficient is represented by the series 

2 cd0* = 
50* + öl0^ + 52V 

The solution of these equations involves the determination, "by 
Y 

trial and error, of the ratio —-■ such that the computed distribution 

of X,x (equations (8) and (8a)) satisfies the torque equation. 

Solution with Variable Induced Velocity 

Steps in the solution of equations (8), {9),  and (10) are outlined 
below; 

(1) Assume a value for p-^,  or compute an approximate value 

by assuming induced velocity constant over the disk by the method 
given in the following section. 

(2) Choose a number of stations, such as x = 0.2, O.k,   0.6, 
0.8, and 1.0, and calculate at each station the values of p-^, P2, 

and p, from equations (6). 
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(3) Calculate \x    at each station, from equation (8) 
where x < p^ or from equation (8a) where x > p-j_. 

(k)  Substitute the values of \x into equation (10) and 
evaluate the integrals graphically or by Simpson's rule. 
Equation (10) must be satisfied.  If it is not, a different 

value of — should be assumed, and steps (1) through (k) 

repeated until the torque is substantially zero. Starting with 

the value of — from constant induced—velocity considerations 

will lead usually to an accurate determination of — for zero 

torque in three trials. The final value of — will usually be 

between 0 and 10 percent larger than that for constant induced 
velocity. 

Y 
(5) Having found the value of ^=r for zero torque, by 

trial and error in step (k),  substitute the appropriate values 
of A.-JJ- into equation (9), and evaluate the integral graphically 
or by Simpson's rule. Solve equation (9) for fi. 

(6) From the value of -=r   from step (k), and ß from 

step (5), solve for the descending velocity Y. 

Solution with Induced Telocity Assumed Constant over the Disk 

If it is assumed that the induced velocity is constant over the 
disk, then an approximate solution of the above equations can readily 
be obtained analytically. In this case X.x is a constant X;  and the 
thrust and torque equations can be written 

and 

where 

cx = ß
2(c2 + o3x) (11) 

c^ = ß2(c + CgX. + c X2 ) (12) 

0 . Ü5? „* . _2M    • (13) 
1   &a apR^crxS/ 

C2=f I  c0x2dx (13a) 
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C3 = c~ cx ^ (!3^) e Jo 

2C( 

%--£** (13C) 

t I     cx3(v + 51< c     = - -±-   \      CX^ÖQ«   + 5-^ + 52ö2)dx (13d) 

6 = ac2 - ^   I       cx2^ + 252e)dx (I3e) 

C7 = C3(a " 52) (X3f) 

In steady autorotation,   the torque equals   zero    (CL   = o\   so that 

equation  (12)  reduces  to 

c-jX2 + cgA.  + c5 = 0 (lit) 

Since., with induced velocity constant, it must he assumed that the 
rotor is in the 'windmill brake state (A, > 0), the solution must he 

= ~°6 + JG62 ~  4c^c7 
'7 

(14a) 
2c 

The following sequence may then he set down for solving the problem 
under the assumption of constant induced velocity: 

(1) Calculate the coefficients c,, c^,   c~,}  c^ c,-, Cß, 

and Cj    from equations (13) through (I3f) 

(2) Calculate X. from equation (14a) 

(3) Calculate tt    from equation (11) 
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(4) Calculate u from the definition of X    (u = XflR) 

(5) Calculate f from its definition [ F =  -  \ 
\   2«pE2u2/ 

(6) Calculate f from equation (l), using the plus sign 
(for the windmill "brake state) 

(7) From the definition of f, calculate Y ( V =    I—  | 
\    V 2JtpE2f J 

Stability of Autorotation 

Blade element.- Considering, for the moment, the stability of a 

solitary "blade element in autorotative vertical descent, the autorotation 
will "be said to "be stable, if, following a disturbance from the equilib- 
rium condition of torque equal to zero, the blade element tends to 
return to the same equilibrium state. If the disturbance made the torque 
decelerating, say, then 

(1) Ü    would decrease 

(2) dT and v would decrease 

(3) V" would increase 

(k)  Hence \x    would increase 

If th9 slope of dQ against X,x,  ^ ', were positive (torque becoming 
dXx 

more autorotative for an increase in X.x), then the equilibrium (dQ = 0) 
would tend to be restored, and the autorotation would be stable. 

Conversely, if  • ^'  < 0, the autorotation would be unstable. 

Botor.— The criterion for the stability of the rotor as a whole, 
by extension of that for the blade element, is 

dx > 0 

Although the evaluation of the above integral is prohibitively 
difficult considering variable induced velocity, under the assumption 
of constant induced velocity over the disk, it reduces to 

— > 0 
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It may lie noted that for X, = 0, the torque would he negative 
(decelerating) for any pitch 9,  so that, at the first trim point (Q = 0) 

on a curve of Q against X,    -^   must "be positive. Therefore, for infin— 
oX 

itesimal disturbances from this trim condition, the autorotation would 
be stähle. As X increases, however, beyond the first trim point, the 
angle of attack of the blades increases, until the blades stall, and the 
curve of Q against X, drops sharply through a second trim point 

where ■*— < 0, and where the autorotation would be unstable. 
oX, 

Above a critical value of blade incidence the curve for Q against A, 
does not intersect the Q = 0 axis. Hence in this case there is no trim 
point, and no autorotation is possible. 

Below the critical blade angle, where both trim points exist, auto- 
rotation can only be steady at the first, stable trim point.  The slightest 
disturbance from the unstable trim state would either cause the rotor to 
revert to the first, stable trim state, or stop autorotating completely. 

If the momentary increase in X,  due to an upgust hitting a rotor 
in stable autorotation at the first trim point, were sufficient to 
increase X    beyond the second trim point, the autorotation would stop. 
If the increase in X    were less than the difference in the two trim 
points, then the autorotation would return to the steady stable state 
at the first trim point. 

In order to investigate the critical blade angle above which auto- 
rotation is impossible, and, for those blade angles where steady auto- 
rotation can exist, to predict the value of an upgust which would cause 
the autorotation to stop, it is necessary to include the effect of blade 
stalling in the expressions for drag and lift coefficients as functions 
of angle of attack. For this purpose, it is assumed that, below the 
stall, the drag coefficient is given by a cubic in angle of attack, 
instead of the usual quadratic, and that, above the stall, the drag and 
lift coefficients are constant at values denoted by c^  and c^ 

respectively. Thus, below the stall, 
■"•s       '•s' 

cdo' = 50' + 5l«r + 52«r2 + &3ar3 (15) 

The blade station at which the stall begins is denoted xs, and is 
given by 

c    = a(e + £-) (16) 
fcmax   \   -"-s / 
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or 

x„ = 

"max - 9 (16a) 

For blades of constant chord, the torque equation is 

2C, 
il.O 

Q a\yß(e  + |\ Idx + 

c7 A,x2dx — 
's 

1.0 

x- V + 5i(" + I) + %(" * I)' + 53(
8 + if dx 

5sx3dx (17) 

As written above, the equation applies for 0< xs < 1.0, which 
is the range of interest here. For 9  = Constant (no twist), integrating 
equation (17) and substituting from equation (l6a), 

2C, 
- = C^Xk + C3X3 + C2\

2 + CJLX. + c0 (18) 
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where 

C],   = 

■C-^-) 

cl max 
-): 

2j  "max-e 

(S0*  ~ 5s) + 510 + 5202 + 5
3ö3 

(5i + czs) +(2&2 - a)e + 3&3e£ 

(62 - a) + 3530 

"max 
a 

- e, 

C3--*3 

C2  = I ( a ~ 52 ~ 3539 

1     3 
-^ + (a - 252)e - 35302"| 

C0  = - i r SQ
1
  + bjQ + b292 + 5303j 

The values  of    X    for    Q = 0,   and the slope,,    ■£,   at those trim £v 
2CQ 

points can "best "be investigated "by calculating and plotting —-^ as a 
a 

function of X for various values of Q. 

SAMPLE CALCULATIONS 

The physical properties for the helicopter chosen for the sample 
calculations are as follows: 

W = 2700 pounds 

* = 3 
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R = 20 feet 

c = I.25 feet (constant) = ce 

a = 5.6 per radian 

c* = 0.0087 - 0.02160^ + O.^OOj,2 

Variable Induced Velocity 

For illustrative purposes, a linear twist of -6° is chosen 
with 9Q.75R 

= ^°> s0  that, i*1 degrees, 

0 = 8.5 - 6x 

or, in radians, 

9  = 0.11*03 - 0.1048 

A value of ( j^) _  of 0.0750 is assumed. 

Performing steps (l) through (3) in the section entitled "Solution 
with Variable Induced Velocity," the variation of \x    with x is 
computed. For example, for x = 0.6, by equations (6), 

v± = 0.788 

p2 = O.O209 

p3 = 8.20 

Since x < p-j_, using equation (8), 

Xx = 0.0124 

Graphical integration of equation (10), using the variation of \x 

computed, gives a net area for Q very nearly zero. Therefore the value 

of f — )    is sufficiently accurate. 
\fiR/Q=0 

Graphical integration of equation (9) gives 

T 

§ bafl2E3 
= O.O385 



NA.CA TN 1906 17 

whence Ü  = 20-9 radians per second. Then 

V = (j^)fiR - 31-3 feet per second 

At "blade station 2 = 0.6, the blade angle of attack is 

a,. = 8 + ^. - 8.5 - 6(0.6) + P^ 57>3 . 6>1o 

Constant Induced Velocity 

For the same pitch and linear twist, using equations (13) 
through (13f), 

c1 =13-50 c5 = -0.00226 

c2 = O.O233 Cg = 0.1190 

c3 = 0.50 c7 = 2.60 

From equation (l4a), 

X = 0.0145 

From equation (11), 

fl =21.0 radians per second 

u = XfiE =6.09 feet per second 

-    T 
F =  5-5- = 12.2 

2xpSrvr 

From equation (l), using the plus sign and K = 2, 

— = 2.16 
f 

whence 

V = / A— = 31.2 feet per second 
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At "blade station x = 0.6,  the angle of attack is 

c^ = 9 + I = 8.5 - 6(0.6) + 57.3 ^^ = 6.30 
0.6 

Stability of Autorotation 

For this calculation the cubic drag polar is assumed, 

cdn' 
= 0-°°87 + 0.06000T - 1.280p2 + 8.00p3 

corresponding to 

50' = O.OO87 

5j_ = 0.0600 

52 = -1.28 

53 = 8.00 

Values pertinent to stalling are taken to "be 

c7   = 1.20 «•max 

c, = 0.60 
's 

5S = O.25O 

Values of the coefficients CL,  CO, C2J C-,, and C0 are computed 

for various values of 9,  and the variation of —- with A. is computed. 

Although these calculations are not given in detail, the results are 

presented in figure 3' The dashed lines are the curves of —- against X 

computed by equation (12) in which blade stalling is neglected. They 
are shown to indicate the effects of blade stalling, and to indicate the 
ranges of X, and 0 where blade stalling may be neglected. 
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DISCUSSION OF CALCULATIONS 

Comparison of Variable and Constant Induced—Velocity Theories 

Calculations for rate of descent V and rotor speed ü    for the 
sample helicopter (see SAMPLE CALCULATIONS) have "been carried out for 
different amounts of "blade twist, "by "both constant and variable induced- 
velocity methods. The results, shown in figure 4, indicate that, for 
performance calculations, the results "by the two methods are practically 
indistinguishable. 

The variations of angle of attack along the "blade, as computed for 
the above cases by the two methods, are plotted in figure 5. Although 
the agreement is good for negative twist, it is clear that the theoretical 
blade load distribution is, in general, considerably affected by the 
assumption of constant induced velocity. 

Stability of Autorotation 

2Cn 
The variation of —-21 against X    for various values of 9, for the 

sample helicopter, is given in figure 3» The blade drag polar used for 
these calculations is compared with the quadratic expression (used in 
the other calculations) in figure 6.  It will be noted that the two are 
essentially identical at low lift coefficients, but that at higher lift 
coefficients a more realistic increase in drag is given by the cubic 
expression used. Also, the stall is considered. 

Consideration of figure 3 shows that for small blade incidence, 
the second, unstable trim point is far enough from the stable one that 
even a strong upgust would not cause X    to increase beyond it. At 
high values of incidence, however, the two trim points are so close 
together that a rotor in stable autorotation at the first point might 
become unstable, and stop autorotation, if hit by even a weak upgust, 
with its attendant momentary increase of X. 

There is, of course, a value of 9 (about 8.8°, from the fig.) 
above which there is no trim point, and therefore autorotation is not 
possible. It is worth noting that using the quadratic drag polar, in 
which stall is neglected, not only results in failure to predict the 
second, unstable trim point and its attendant danger at high values 
of 9, but would also indicate that autorotation would be possible at 
any value of 9. It is apparent, then, that the blade stall cannot be 
neglected at high incidence. 

In figure 7J values of X    for the first trim points are plotted 
against 9, as read from the curves of figure 3» For comparison, values 
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of X    computed "by the method given in the section entitled "Solution 
with Induced Velocity Assumed Constant over the Disk," using the quad- 
ratic drag polar and neglecting the stall, are also shown. For small 
values of 9,  the difference is very slight, indicating that blade 
stalling can safely be neglected for performance calculations at low 
incidence. 

It should be noted that the results obtained from the study of 
stability of autorotation should be considered purely qualitative. The 
most important reason is that the constant induced-velocity theory used 
fails to predict accurately the angle-of-attack distribution along the 
blade, and hence cannot accurately account for the all-important distri- 
bution of stall at high angles of incidence where the stability is 
questionable. To be confident of quantitative results it would first be 
necessary, therefore, to predict accurately the actual induced—velocity 
distribution. It would also be necessary to represent accurately the 
drag curve at angles above the stall, and to account for Reynolds number 
effect on drag and maximum lift at various blade stations. 

CONCLUSIONS 

Although they are somewhat limited by the assumptions used in the 
theory on which they are based, the following conclusions seem justified: 

1. Eate of descent and rotor speed are not critically affected by 
different assumptions for rotor thrust coefficient based on descending 
velocity f against rotor thrust coefficient based on resultant 
velocity F in the range of conditions encountered in steady autorotative 
descent. 

2. For the computation of rate of descent and rotor speed, constant 
induced—velocity theory may be used at low incidence where stalling may 
be neglected. At high incidences, blade stalling must be accounted for 
in order to obtain even qualitative agreement between theory and practice. 
For quantitative agreement in this case, it would probably be necessary 
to use a variable induced—velocity theory. 

3. At high values of incidence, although the autorotation may be 
stable for infinitesimal disturbances, a finite disturbance such as an 
upgust might well stall enough of the blades to put the rotor in an 
unstable regime where it would cease autorotating. There is little danger 
of this, at least for aerodynamically clean blades, at low incidence. 

k.  For the sample design studied, the constant induced—velocity 
theory, accounting for blade stalling, indicates a critical value of 
blade incidence of about 8.8°, above which steady autorotation would not 
be possible. 

Princeton University 
Princeton, N. J., May k,  19kQ 
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